10 Feb 2019

EXPLORING BIOENERGY RESEARCH FOR ENVIRONMENT AND COMMUNITY


Important and sustainable global issues is:
·           The world currently has more than 7 billion people and it is estimated that by 2050 there will be as many as 9 billion people .
·           A fifth of the population (1.4 billion people) currently lives on $ 1.25 a day or less.
·           One and a half billion people in the world do not have access to electricity.
·           Two and a half billion people do not have toilets.
·           Nearly one billion people starve every day.
·           Greenhouse gas emissions continue to increase and more than one third of all known species can become extinct if climate change continues to run out of control.
Antroposen is a new term, proposed in 2000 by Nobel Prize-winning scientist Paul Crutzen. This term defines the latest geological period of the earth as a human or anthropogenic influence. Based on the processes of the atmospheric system, geology, hydrology, biosphere, and other earth systems that are altered by humans.
In a 2002 article in the journal Nature stated: " Anthropocene can be said to have begun in the late eighteenth century, when an analysis of air trapped in polar ice showed the beginning of the growth of global concentrations of carbon dioxide and methane". Zalasiewicz et al. stated that the Anthropocene was best identified at the beginning of the Industrial Revolution, although they also proposed the beginning of the nuclear era in the 1960s as a useful date, due to the current presence of radioactive isotopes in sediments at this time.
After post-1950s from traces of the Earth System, humans played a central role in the discussion around the formalization of the Anthropocene as the future of the Earth.
Millennium Development Goals (MDGs) determine a result but do not establish a process that allows to realize the goal. MDGs determined without reference to the initial conditions, but at least in part depends on where it came from. Targets and indicators are not consistent with each other. Ownership conflict because of the contradiction between global goals and national priorities.
Of the Millennium Development Goals (MDGs) for 15 years (2000-2015) and now we arrive at the Sustainable Development Goals (SDGs) for 15 years (2016 - 2030). Important relevance to SDGs, which are affordable, clean energy, sustainable cities, communities and climate.

Material Evaluation for Potential and Efficient Resources for Biofuel
Biomass production is 5x higher tropical and sub-tropical regions. Because it has diverse and abundant plants that have hemicellulose, lignin and others (such as fat, protein and starch).
Edible feedstock for Biodiesel from Asia, one of them is Palm Oil (Elaeis guineensis). The problem is that edible vegetable oils used as raw materials can cause agriculture to be a dilemma, between food and fuel needs. The need for several potential alternative raw materials and suitable for bioenergy production (especially Biofuel in Asia) .

Evaluation of the Potential of Several Raw Materials in Asia
Souce: Lubes, 2019
 
From a sustainable perspective, the raw material for vegetable oil/ fat planted on dry land is also very potential as an alternative for bioenergy production to prevent the agricultural dilemma for fuel and food.

Acceptance of Young Communities Towards Renewable Energy
Lack of awareness and knowledge in the younger generation towards the SDGs; especially on Climate and Sustainable Energy Affordable. Improve education, increase awareness and human capacity and institutions in climate change mitigation, adaptation, impact reduction, and early warning. Doubling the pace of global energy efficiency improvement in 2030 with the Energy Triangle Approach (building design, population behavior and service design).
The challenges faced are:
·                Good relationship with the school administrator
·                Agreement and full support from the Principal
·                Strong interpersonal skills

"Improving energy connectivity and market integration in ASEAN to achieve energy security, accessibility, affordability and sustainability for all"
ASEAN Plan for Energy Cooperation (2016-2025) 

Souce:
Lubes, Z. I. Z. 2019. Special Lecture: Exploring Bioenergy Research For Environment And Community. University Of Malaya

MENGEKSPLORASI PENELITIAN BIOENERGY UNTUK LINGKUNGAN DAN MASYARAKAT


Isu-isu global yang penting dan berkelanjutan yaitu:
·           Dunia saat ini memiliki lebih dari 7 miliar penduduk dan diperkirakan pada tahun 2050 akan ada sebanyak 9 miliar orang.
·           Seperlima jumlah penduduk (1,4 miliar orang) saat ini hidup dengan $ 1,25 sehari bahkan kurang.
·           Satu setengah miliar penduduk dunia tidak memiliki akses listrik.
·           Dua setengah miliar orang tidak memiliki toilet
·           Hampir satu miliar orang kelaparan setiap hari.
·           Emisi Gas Rumah Kaca terus meningkat dan lebih dari sepertiga dari semua spesies yang diketahui bisa punah jika perubahan iklim terus tidak terkendali.
Antroposen adalah istilah baru, yang diusulkan pada tahun 2000 oleh ilmuwan pemenang Hadiah Nobel, Paul Crutzen. Istilah ini mendefinisikan periode waktu geologis bumi yang terbaru sebagai pengaruh manusia atau antropogenik. Berdasarkan pada proses sistem atmosfer, geologis, hidrologi, biosfer, dan sistem bumi lainnya yang diubah oleh manusia.
Dalam sebuah makalah tahun 2002 di jurnal Nature menyatakan: "Antroposen dapat dikatakan telah dimulai pada akhir abad kedelapan belas, ketika analisis udara yang terperangkap dalam es kutub menunjukkan awal pertumbuhan konsentrasi global karbon dioksida dan metana". Zalasiewicz dkk. menyatakan bahwa Antroposen paling baik diidentifikasi pada awal Revolusi Industri, meskipun mereka juga mengusulkan permulaan era nuklir pada 1960-an sebagai tanggal yang berguna, karena kehadiran global isotop radioaktif dalam sedimen pada saat ini. waktu.
Percepatan pasca-1950 dari jejak pada Sistem Bumi, manusia memainkan peran sentral dalam diskusi seputar formalisasi Antroposen sebagai masa depan Bumi.
Tujuan Pembangunan Millenium (Millenium Development Goals) menentukan suatu hasil tetapi tidak menetapkan proses yang memungkinkan untuk merealisasikan tujuan. Millenium Development Goals (MDGs) ditetapkan tanpa mengacu pada kondisi awal, tetapi paling tidak sebagian tergantung pada dari mana asalnya. Sasaran, target dan indikator tidak konsisten satu sama lain. Konflik kepemilikan karena kontradiksi antara tujuan global dan prioritas nasional.
Dari Tujuan Pembangunan Millenium (Millenium Development Goals) selama 15 tahun (2000 – 2015) dan sekarang kita tiba pada Tujuan Pembangunan Berkelanjutan (Sustainable Development Goals) selama 15 tahun (2016 – 2030). Relevansi yang penting dengan Tujuan Pembangunan Berkelanjutan (SDGs) yaitu energi yang terjangkau dan bersih, kota dan komunitas yang berkelanjutan dan iklim.

·           Evaluasi Bahan Bakar Potensial dan Efisien Sumber Daya untuk Biofuel
Produksi biomassa 5x lebih tinggi wilayah tropis dan sub-tropis. Karena mempunyai tumbuhan beraneka ragam dan berlimpah yang memiliki hemiselulosa, lignin dan lainnya (seperti lemak, protein dan pati).
Bahan Baku Makanan (edible feedstock) untuk Biodiesel dari Asia yaitu Kelapa Sawit (Elaeis guineensis). Masalahnya adalah minyak nabati yang dapat dimakan digunakan sebagai bahan baku dapat menyebabkan pertanian menjadi dilema, antara kebutuhan pangan dan bahan bakar. Kebutuhan beberapa bahan baku alternatif yang potensial dan cocok untuk produksi bioenergi (Khususnya Biofuel di Asia).

Evaluasi Potensi Beberapa Bahan Baku di Asia
Sumber: Lubes (2019)

Dari perspektif berkelanjutan, bahan baku biomassa minyak / lemak nabati yang ditanam di lahan kering juga sangat potensial sebagai alternatif untuk produksi bioenergi untuk mencegah dilema Pertanian untuk Bahan Bakar dan Makanan.

·           Penerimaan Komunitas Muda Menuju Energi Terbarukan
Kurangnya kesadaran dan pengetahuan di generasi muda terhadap Sustainable Development Goals (SDGs); terlebih tentang Iklim dan Energi Berkelanjutan yang Terjangkau. Meningkatkan pendidikan, peningkatan kesadaran dan kapasitas manusia serta kelembagaan dalam mitigasi perubahan iklim, adaptasi, pengurangan dampak, dan peringatan dini. Menggandakan laju peningkatan efisiensi energi global pada tahun 2030 dengan Pendekatan Segitiga Energi (desain bangunan, perilaku penduduk dan desain layanan).
Tantangan yang dihadapi yaitu:
·           Hubungan yang baik dengan administrator sekolah
·           Perjanjian dan dukungan penuh dari Kepala Sekolah
·           Keterampilan interpersonal yang kuat

"Meningkatkan konektivitas energi dan integrasi pasar di ASEAN untuk mencapai keamanan energi, aksesibilitas, keterjangkauan dan keberlanjutan untuk semua"
Rencana ASEAN untuk Kerjasama Energi (2016-2025)

Sumber:
- Lubes, Z. I. Z. 2019. Special Lecture: Exploring Bioenergy Research For Environment And Community. University Of Malaya

5 Feb 2019

Chloroquine


Chloroquine

Chloroquine is a prototypical antimalarial agent with a mechanism that is not well understood. Chloroquine is 4-aminoquinolin with antimalarial and anti-inflammatory. Chloroquine is aminoquinolin used for prevention and treatment of malaria.
The mechanism of action of chloroquine plasmodis is not entirely certain. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is very toxic to cells and disrupts membrane function. The mechanism of action of the Antiprotozoal-Malaria may be based on the ability of chloroquine to bind and change the properties of DNA. Chloroquine is also carried into acidic vacuoles from parasites in erythrocytes thereby increasing the pH of acidic vesicles, disrupting vesicle function and possibly inhibiting phospholipid metabolism.



Chloroquine Structure

Studies in pregnant rats show that chloroquine is ready to cross the placenta, accumulates selectively in the structure of the fetal eye's melanin, and is held in ocular tissue for 5 months after the drug is removed from other body parts. The toxicity of antimalarial drugs varies due to differences in the chemical structure of this compound. Extraordinary cardiac complications in long-term chloroquine therapy; Congestive heart failure and restrictive cardiomyopathy can occur, but conduction disorders are more common.
All chemicals and reagents used in synthesis are from synthetic levels obtained from Acros Organic, Merck and Rankem. The primary intermediary in the reaction with methane sulfonyl chloride produces the formation of sulfonate esters as a secondary transition.

 
Scheme I from the synthesis of "reverse chloroquine"

 
Scheme II from the synthesis of "reverse chloroquine"

Primary intermediate synthesis 1. A mixture of 4,7-dichloroquinolin (4.95 g, 0.025 mol) and ethanolamine (15.27 g, 15.0 mL, 0.25 mol) was heated by stirring at 130-140°C for 24 hours. Completion of the reaction was confirmed by TLC. After cooling, the mixture is poured into water (150 mL) and filtered. After drying the air, the solid is boiled in methanol (100 mL), then cooled to room temperature and then cooled in ice. The solid is filtered and then washed with a small amount of cold methanol to produce primary intermediate substance 1 as white solid; yield, 60%; mp 208 - 210°C; Rf , 0.66 (DCM - metanol, 7: 3); IR (ν, cm-1): 3058 (C-H, sp2 stretch), 850 (C-H, bend sp 2 ), 2918 (C-H, sp3 stretch), 1433 (C=C, stretch ring), 1612 (C=C, bending ring), 3136 (O-H, stretch), 1137 (C-O, stretch), 1334 (C-N, stretch), 3301 (N-H, stretch), 802 (C-Cl, stretch).
Primary intermediate synthesis 2. A mixture of 4,7-dichloroquinolin (25,35 g, 0,128 mol) and 3-aminopropanol (120 mL, 1.57 mol) was heated by stirring at 130-140°C for 24 hours. Completion of the reaction was confirmed by TLC. After cooling, the reaction is poured into water (500 mL), filtered, and washed with water. The solid residue is dried with air and then boiled in ethyl acetate (250 mL) to produce primary intermediate 2 as white solid; yield, 80%; mp 100-105°C; Rf , 0.70 (DCM - metanol, 7: 3); IR (ν, cm-1): 3205 (C-H, sp2 stretch), 854 (C-H, bend sp2), 2893 (C-H, stretch sp3), 1585 (C=C, ring stretch), 3240 (O-H, stretch), 1139 (C-O, stretch), 1280 (C-N, stretch), 3371 (N-H, stretch), 800 (C-Cl, stretch).
Secondary intermediate synthesis 1. For intermediate 1 primary suspension (1.5 g, 6.7 mmol) in anhydrous DCM (25 mL) under atmospheric nitrogen triethylamine (2 mL, 14.3 mmol) is added. The mixture is cooled below 0°C. Metanesulfonylchloride (0.57 mL, 7.41 mmol) is added slowly, keeping the temperature below 5°C, and the mixture stirred in a cold bath for 2 hours and then added to the saturated NaHCO3 solution (100 mL). The organic layer is separated and washed with a saturated NaHCO3 solution (25 mL). The combined aqueous layer is extracted with DCM (2 x 20 mL). The combined organic extract is evaporated to leave secondary intermediates 1 as white solids; yield, 30%; mp 135 - 140°C; Rf, 0.63 (DCM - methanol, 7: 3); IR (ν, cm-1): 3056 (C-H, sp2 stretch), 842 (C-H, bend sp2), 2929 (C-H, sp3 stretch), 1433 (C=C, ring stretch), 1612 (C=C, bend ring), 1334 (C-N, stretch), 3280 (N-H, stretch), 763 (C-Cl, stretch), 1170 (S=O, symmetrical stretch), 1344 (S=O, asymmetric stretch).
Secondary intermediate synthesis 2. For intermediate primary suspension 2 (0.5 g, 2.1 mmol) in anhydrous THF (10 mL) under an atmosphere of nitrogen triethylamine (0.66 mL, 4.2 mmol) is added. The mixture is cooled below 0°C. Metansulfonylchloride (0.17 mL, 2.2 mmol) is added slowly, keeping the temperature below 5°C and the reaction stirred in a cold bath for 45 minutes. After dilution with a saturated NaHCO3 solution (20 mL), the reaction is extracted with ether (20 mL then 2 x 10 mL). The organic extract was dried over MgSO4, filtered and evaporated to leave intermediates 2 as white solids; yield, 35%; mp 145-150°C; Rf, 0.66 (DCM - methanol, 7: 3); IR (ν, cm-1): 3058 (C-H, sp2 stretch ), 842 (C-H, bend sp2), 2929 (C-H, sp3 stretch), 1433 (C=C, stretch ring), 1612 (C=C, bend ring), 1334 (C-N, stretch), 3280 (N-H, stretch), 768 (C-Cl, stretch), 1175 (S=O, symmetrical stretch), 1362 (S=O, asymmetric stretch).
Synthesis intermediate tertiary 1. 4,4'- dimethylbenzophenone (0,019 mol, 4 g) dissolved in toluene (100 mL). 4-Aminopiperidine (0.019 mol, 1.9 g, 2 mL) was added and followed by p-polyuenesulfonic acid (0.3 g). The mixture is heated until reflux for 3 days with Dean-Stark Trap to remove water. After cooling the mixture to room temperature, toluene is removed at a low pressure to leave the coarse white powder used without further purification.
Intermediate synthesis tertiary 2. 4,4'- dichlorobenzophenone (0.0319 mol, 8 g) dissolved in toluene (200 mL). 4-Aminopiperidine (0.0319 mol, 3.2 g, 3.5 mL) was added and followed by p-polyuenesulfonic acid (0.3 g). The mixture is heated until reflux for 3 days with Dean-Stark Trap to remove water. After cooling the mixture to room temperature, toluene is removed at low pressure to remove the white coarse crystals used without further purification.
Synthesis of 7-chloro-N-(2-(4-(di-p-tolylmetileneamino) piperidine-1-yl) ethyl) quinolin-4-amine (compound 1) . Tertiary intermediate 2 (0.01 mol, 2.92 g) is dissolved in acetonitrile (40 mL) and then intermediates 1 (0.008 mol, 2.4 g) and potassium carbonate (3 g) are added. The mixture is stirred at 70°C for 2 days. After cooling the mixture to room temperature, add water (100 mL) and mix the mixture for 30 minutes. The deposited solid is filtered, washed with water and recrystallized from hexane to produce white powder; yield, 25%; mp 82-87°C; Rf, 0.53 (DCM - methanol, 7: 3); IR (ν, cm-1): 3033 (C-H, sp2 stretch), 842 (C-H, bend sp2 ), 2918 (C-H, sp 3 stretch ), 1485 (C=C, ring stretch), 1604 (C=C, bend ring), 1294 (C-N, stretch), 3272 (N-H, stretch), 678 (N-H, wagging), 1554 (N-H, bend), 1641 (N=C, stretch), 750 (C-Cl, stretch ); 1H NMR (CHCl3-d; δ, ppm): 2,437 (12H, CH), 1,584 (2H, CH), 1,255 (2H, CH), 7.285-7.258 (8H, Ar), 7,715-7,688 (5H, Q); mass spectrum (M/z): 497.28 (M+); C13NMR (CHCl3-d; δ, ppm): 24.3, 31.6, 41.9, 47.7, 49.7, 53.4, 113, 119.7,122.5, 127.3, 129.4, 134.9, 136, 140.7, 148.2, 151.4, 154.5, 169.2; elemental analysis : C, 74.89; H, 6.67; Cl, 7.17; N, 11.19.
The synthesis of 7-chloro-N-(3-(4-(di-p-tolylmetileneamino) piperidine-1-yl) propyl) quinolin-4-amine (compound 2) . Tertiary Intermediate 2 (0.0013 mol, 0.39 g) is dissolved in acetonitrile (20 mL) and then secondary intermediates 2 (0.0013 mol, 0.42 g) and potassium carbonate (0.6 g) are added. The mixture is stirred at 70 ° C for 2 days. After cooling the mixture to room temperature, add water (100 mL) and mix the mixture for 30 minutes. The deposited solid is filtered, washed with water and recrystallized from hexane to produce white powder; yield, 30%; mp 78-83°C; Rf, 0.50 (DCM - methanol, 7: 3); IR (ν, cm-1): 3028 (C-H, sp2 stretch), 842 (C-H, bend sp2), 2920 (C-H, stretch, sp3), 1485 (C=C, ring stretch), 1604 (C=C, bend ring), 1257 (C-N, stretch), 3276 (N-H, stretch), 678 (N-H, wagging), 1554 (N-H, bend), 1643 (N=C, stretch), 750 (C-Cl, stretch); 1H NMR (CHCl3-d; δ, ppm): 2,438-2,366 (12H, CH), 1.38 5(2H, CH), 1,221 (2H, CH), 7,286-7,259 (8H, Ar), 7,715-7,688 (5H, Q); C13NMR (δ, ppm): 24.3, 27.2, 31.6, 43.2, 47.9, 50, 50, 51.8, 113, 119.7, 122.5, 127.3, 129.1, 129.4, 134.9, 136, 140.7, 148.2, 151.4, 54.5, 169.2 ; mass spectrum (M/z): 511.30 (M+); elemental analysis: C, 74.87; H, 6.56; Cl, 7.11; N, 11.23.
a.         Synthesis of 7-chloro-N-(2-(4-(di-p-tolylmethylamino) piperidine-1-yl) ethyl) quinolin-4-amine (compound 3) . Compound 3A (0.0060 mol, 0.3 g) is dissolved in methanol (20 mL) and cooled in ice. Sodium borohydride (0.002 mol, 0.08 g) is added and the mixture is stirred overnight at room temperature. After evaporation of methanol, the residue is stirred with water (50 mL) for 30 minutes and then extracted with DCM (3 x 20 mL). The extract is washed with water, dried with magnesium sulfate and evaporated to produce colorless crystals; yield, 80%; mp 62-67°C; Rf, 0.51 (DCM - methanol, 7: 3); IR (ν, cm-1): 3020 (C-H, sp2 stretch), 854 (C-H, bend sp2), 2862 (C-H, sp3 stretch), 1242 (C-N, strecth), 3299 (N-H, stretch), 678 (N-H, wagging), 756 (C-Cl, stretch); 1H NMR (CHCl3-d; δ, ppm): 2,322, 2,123, 2,112 (12H, CH), 1,555 (2H, CH), 1,256 (2H, CH), 7,145-7,118 (8H, Ar), 7,265-7,251 (5H, Q), 5,781 (1H, NH), C13NMR (δ, ppm): 24.3, 31.1, 47.7, 49.5, 49.5, 52.5, 53.4, 58.9, 113, 119.7, 122.5, 127.3, 128.2, 129.6 , 134.9, 135.9, 139.8, 148.2, 151.4, 154.5; mass spectrum (M/z): 498.24 (M+); analysis of elements: C, 74.56; H, 7.01; Cl, ​​7.05; N, 11.19.
b.        Synthesis of N-(2-(4-(bis-(4-chlorophenyl) methyleneamino) piperidine-1-yl) ethyl) 7-chloroquinolin-4-amine (compound 5). Tertiary intermediate 3 (0.009 mol, 3 g) was dissolved in acetonitrile (50 mL) and then added substance secondary intermediate 1 (0.009 mol, 2.78 g) and potassium carbonate (2.5 g). The mixture is stirred at 70 ° C for 2 days. After cooling the mixture to room temperature, add water (100 mL) and mix the mixture for 30 minutes. The deposited solid is filtered, washed with water and recrystallized from hexane to produce white powder; yield, 20%; mp 115-120°C; Rf, 0.73 (DCM - methanol, 7: 3); IR (ν, cm-1): 3055 (C-H, sp2 stretch), 848 (C-H, bend sp2), 2923 (C-H, sp3 stretch), 1485 (C=C, ring stretch), 1581 (C=C, bend ring), 1247 (C-N, stretch), 3278 (N-H, stretch), 732 (N-H, wagging), 1554 (N-H, bend), 754 (C-Cl, stretch), 806, 827 (p-C-Cl, stretch); 1H NMR (CHCl3-d; δ, ppm): 2,380 (4H, CH), 1,584 (2H, CH), 1,255 (2H, CH), 7,285 - 7,258 (8H, Ar), 7,715 - 7,688 (5H, Q); C13NMR (δ, ppm) 31.6, 41.9, 47.7, 49.7, 53.4, 113, 119.7, 122.5, 127.3 , 129.4, 130.6, 134.9, 136.6, 137.1 148.2, 151.4, 154.5, 169.2; mass spectrum (M/z): 537.18 (M+); elemental analysis: C, 64.69; H, 5.02; Cl, 19.75; N, 10.38.
c.         Synthesis of N-(3-(4-(bis-(4-chlorophenyl)methyleneamino) piperidine-1-yl) propyl) 7-chloroquine-4-amine (compound 6). Tertiary Intermediate 2 (0.0012 mol, 4 g) is dissolved in acetonitrile (40 mL) and then secondary intermediates 2 (0.012 mol, 3.78 g) and potassium carbonate (5 g) are added. The mixture is stirred at 70 ° C for 2 days. After cooling the mixture to room temperature, add water (100 mL) and mix the mixture for 30 minutes. The precipitated solid is filtered, washed with water and recrystallized from hexane to produce white powder; yield, 35%; mp 100-105°C; Rf, 0.66 (DCM - methanol, 7:3); IR (ν, cm-1): 3018 (C-H, sp2 stretch), 850 (C-H, bend sp2), 2920 (C-H, sp3 stretch), 1485 (C=C, ring stretch), 1585 (C=C, bend ring), 1245 (C-N, stretch), 3280 (N-H, stretch), 715 (N-H, wagging), 1554 (N-H, bend), 752 (C-Cl, stretch), 804, 831 (p-C-Cl, stretch); 1H NMR (CHCl3-d; δ, ppm): 2,350 (12H, CH), 1,559 (2H, CH), 1,255 (2H, CH), 7,487 - 7,459 (8H, Ar), 7,742 - 7,714 (5H, Q); C13NMR (δ, ppm): 31.6, 43.2, 47.9, 50, 51.8, 113, 119.7, 122.5, 127.3, 129, 130.6, 134.9, 136.6, 148.2, 151.4, 154.5, 169.2; mass spectrum (M/z): 551.21 (M+); elemental analysis: C, 65.23; H, 5.28; Cl, 19.23; N, 10.09.

Source:
·           Sharma, R. Tiwari, A. & Parate, Anupama. 2015. Synthesis Of New Chloroquine Derivates As Antimalarial Agents. Pharmaceutical Chemistry Journal , 49 (8), 537 - 542